
 

 
 

AZ-400T00: Designing and Implementing Microsoft DevOps Solutions 

Module 1: Get started on a DevOps transformation journey 

Lessons 

• Introduction to DevOps 
• Choose the right project 
• Describe team structures 
• Choose the DevOps tools 
• Plan Agile with GitHub Projects and Azure Boards 
• Introduction to source control 
• Describe types of source control systems 
• Work with Azure Repos and GitHub 

Lab: Agile planning and portfolio management with Azure Boards 
Lab: Version controlling with Git in Azure Repos 
 
After completing this module, students will be able to: 

• Understand what DevOps is and the steps to accomplish it 
• Identify teams to implement the process 
• Plan for the transformation with shared goals and timelines 
• Plan and define timelines for goals 
• Understand different projects and systems to guide the journey 
• Select a project to start the DevOps transformation 
• Identify groups to minimize initial resistance 
• Identify project metrics and Key Performance Indicators (KPI's) 
• Understand agile practices and principles of agile development 
• Create a team and agile organizational structure 

Module 2: Development for enterprise DevOps 

Lessons 

• Structure your Git Repo 
• Manage Git branches and workflows 
• Collaborate with pull requests in Azure Repos 
• Explore Git hooks 

Plan foster inner source 
Manage Git repositories 
Identify technical debt 



 

 
Lab: Version controlling with Git in Azure Repos 

After completing this module, students will be able to: 

• Understand Git repositories 
• Implement mono repo or multiple repos 
• Explain how to structure Git Repos 
• Implement a change log 
• Describe Git branching workflows 
• Implement feature branches 
• Implement GitFlow 
• Fork a repo 
• Leverage pull requests for collaboration and code reviews 
• Give feedback using pull requests 

Module 3: Implement Cl with Azure Pipelines and GitHub Actions 

Lessons 

• Explore Azure Pipelines 
• Manage Azure Pipeline agents and pools 
• Describe pipelines and concurrency 
• Explore Continuous integration 
• Implement a pipeline strategy 
• Integrate with Azure Pipelines 
• Introduction to GitHub Actions 
• Learn continuous integration with GitHub Actions 
• Design a container build strategy 
 

Lab: Configuring agent pools and understanding pipeline styles 
Lab: Enabling continuous integration with Azure Pipelines 
Lab: Integrating external source control with Azure Pipelines 
Lab: Implementing GitHub Actions by using DevOps Starter 
Lab: Deploying Docker Containers to Azure App Service web apps 
 
After completing this module, students will be able to: 

• Describe Azure Pipelines 
• Explain the role of Azure Pipelines and its components 
• Decide Pipeline automation responsibility 
• Understand Azure Pipeline key terms 
• Choose between Microsoft-hosted and self-hosted agents 
• Install and configure Azure pipelines Agents 
• Configure agent pools 
• Make the agents and pools secure 



 

 
• Use and estimate parallel jobs 

Module 4: Design and implement a release strategy 

Lessons 

• Introduction to continuous delivery 
• Explore release strategy recommendations 
• Build a high-quality release pipeline 
• Introduction to deployment patterns 
• Implement blue-green deployment and feature toggles 
• Implement canary releases and dark launching 
• Implement A/B testing and progressive exposure deployment 
 

Lab: Creating a release dashboard 
Lab: Controlling deployments using Release Gates 
 
After completing this module, students will be able to: 

• Explain continuous delivery (CD) 
• Implement continuous delivery in your development cycle 
• Understand releases and deployment 
• Identify project opportunities to apply CD 
• Explain things to consider when designing your release strategy 
• Define the components of a release pipeline and use artifact sources 
• Create a release approval plan 
• Implement release gates 
• Differentiate between a release and a deployment 

Module 5: Implement a secure continuous deployment using Azure Pipelines 

Lessons 

• Create a release pipeline 
• Provision and test environments 
• Manage and modularize tasks and templates 
• Automate inspection of health 
• Manage application configuration data 
• Integrate with identity management systems 
• Implement application configuration 

Lab: Configuring pipelines as code with YAML 
Lab: Setting up and running functional tests 



 

 
Lab: Integrating Azure Key Vault with Azure DevOps 
 
After completing this module, students will be able to: 

• Explain the terminology used in Azure DevOps and other Release Management 
Tooling 

• Describe what a Build and Release task is, what it can do, and some available 
deployment tasks 

• Implement release jobs 
• Differentiate between multi-agent and multi-configuration release job 
• Provision and configure target environment 
• Deploy to an environment securely using a service connection 
• Configure functional test automation and run availability tests 
• Setup test infrastructure 
• Use and manage task and variable groups 

Module 6: Manage infrastructure as code using Azure and DSC 

Lessons 

• Explore infrastructure as code and configuration management 
• Create Azure resources using Azure Resource Manager templates 
• Create Azure resources by using Azure CLI 
• Explore Azure Automation with DevOps 
• Implement Desired State Configuration (DSC) 
• Implement Bicep 

Lab: Azure deployments using Azure Resource Manager templates 

After completing this module, students will be able to: 

• Understand how to deploy your environment 
• Plan your environment configuration 
• Choose between imperative versus declarative configuration 
• Explain idempotent configuration 
• Create Azure resources using ARM templates 
• Understand ARM templates and template components 
• Manage dependencies and secrets in templates 
• Organize and modularize templates 
• Create Azure resources using Azure CLI 

Module 7: Implement security and validate code bases for compliance 



 

 
Lessons 

• Introduction to Secure DevOps 
• Implement open-source software 
• Software Composition Analysis 
• Static analyzers 

OWASP and Dynamic Analyzers 
Security Monitoring and Governance 

Lab: Implement security and compliance in Azure Pipelines 
Lab: Managing technical debt with SonarQube and Azure DevOps 
 
After completing this module, students will be able to: 

• Identify SQL injection attack 
• Understand DevSecOps 
• Implement pipeline security 
• Understand threat modeling 
• Implement open-source software 
• Explain corporate concerns for open-source components 
• Describe open-source licenses 
• Understand the license implications and ratings 
• Work with Static and Dynamic Analyzers 
• Configure Microsoft Defender for Cloud 

Module 8: Design and implement a dependency management strategy 

Lessons 

• Explore package dependencies 
• Understand package management 
• Migrate, consolidate, and secure artifacts 
• Implement a versioning strategy 
• Introduction to GitHub Packages 

Lab: Package management with Azure Artifacts 

After completing this module, students will be able to: 

• Define dependency management strategy 
• Identify dependencies 
• Describe elements and componentization of a dependency management 
• Scan your codebase for dependencies 



 

 
• Implement package management 
• Manage package feed 
• Consume and create packages 

Publish packages 
Identify artifact repositories 
Migrate and integrate artifact repositories 

Module 9: Implement continuous feedback 

Lessons 

• Implement tools to track usage and flow 
• Develop monitor and status dashboards 
• Share knowledge within teams 
• Design processes to automate application analytics 
• Manage alerts, Blameless retrospectives and a just culture 

Lab: Monitoring application performance with Application Insights 
Lab: Integration between Azure DevOps and Microsoft Teams 
Lab: Sharing Team Knowledge using Azure Project Wikis 
 
After completing this module, students will be able to: 

• Implement tools to track feedback 
• Plan for continuous monitoring 
• Implement Application Insights 
• Use Kusto Query Language (KQL) 
• Implement routing for mobile applications 
• Configure App Center Diagnostics 
• Configure alerts 
• Create a bug tracker 
• Configure Azure Dashboards 
• Work with View Designer in Azure Monitor 


